F1

La F1 a tu alcance

INFORME: ¿Cómo serían las cúpulas de los Fórmula 1?

La FIA propuso y probó dos modelos... nosotros planteamos un tercer diseño, obra de nuestro analista técnico
006.jpg
6
11 Ago 2015 - 12:44

En este parón veraniego que tan largo y aburrido suele ser me he decidido a rescatar un trabajillo que realicé hace algún tiempo. La seguridad es algo vital en la F1, y si echamos la vista atrás, la cabeza suele ser la parte más afectada, aun teniendo unos cascos cada vez más impenetrables.

Pero por muy impenetrables que sean, una rueda, una rampa, muelle, grúa o incluso otro monoplaza pueden invadir esa zona, ante lo que un casco poco podrá hacer. Y es por eso que en una asignatura de simulación de resistencia, me lancé a hacer este trabajo. Por cierto, conté con la ayuda de un chaval llamado Álvaro Vázquez, otro loco del motor como yo.

Se lo comentamos al profesor y le pareció una idea genial. Diseñar una cúpula que se pueda acoplar casi sin modificaciones en un monoplaza actual y comprobar –de manera muy superficial, con los medios a nuestro alcance- su resistencia ante cierta carga.

El problema del programa del que disponíamos era que solo podían realizarse ensayos estáticos, pero ya nos deja entrever la ayuda que una cúpula podría ofrecer a la hora de salvar vidas.

DOCUMENTACIÓN

Como en cualquier trabajo, lo primero es documentarse. Para el diseño de la cúpula tuvimos en cuenta la normativa actual del habitáculo, con las dimensiones que marca el reglamento técnico:

001_8.jpg

 

 

Además, hace unos años la FIA ya realizó unos ensayos al respecto, con dos cúpulas distintas, una de policarbonato muy fino con una forma no muy eficiente, y otra del avión F16.

El ensayo se realizó con una rueda con masa de 20 kg, a 225 km/h y una deceleración de aproximadamente 1 décima de segundo. En estos ensayos, la cúpula de policarbonato se rompe pero consigue desviar la rueda, mientras que la del avión a penas se inmuta.

Haciendo una aproximación por la que algún ingeniero me matará, un cuerpo de 20 kg que sufre una deceleración de 300 km/h a 0 en 0,1 segundos nos da una fuerza de unos 16 KN. Realmente era por tirar por algún lado, puesto que el ensayo es estático. Pero vamos, que es como tener que aguantar más de tonelada y media sobre ti.

 

DISEÑO

Con estos datos de base, se diseñaron tres variantes de cúpula con una forma redondeada, muy parecida a la de los aviones. Los números a los que echar el ojo eran la masa de la cúpula, la visibilidad y la resistencia. Ah, y la resistencia aerodinámica, pero con nuestros medios, no hacerla cuadrada es todo lo que podíamos optimizar.

El primer modelo, en policarbonato, tiene un grosor de 5 mm, lo que nos da un peso de 1,8 kg aproximadamente. Una segunda alternativa reduce el grosor del policarbonato a 3 mm, mejorando la visibilidad ya que no afecta tanto la refracción y pesando poco más que 1 kg.

Por último, hemos planteado una tercera alternativa, con el grosor de 3 mm, y a mayores un refuerzo de fibra de carbono:

ENSAYOS

Los ensayos se realizaban con la carga en dirección frontal y lateral. En principio lateralmente no debería aguantar tanto, pero bueno, mejor que sobre en este sentido. El punto de aplicación de la carga es aproximadamente donde impactaría un neumático.

Así muy rápidamente explicado, una fuerza aplicada a una superficie genera una tensión. Cuanto más pequeña sea la superficie o más grande la fuerza, mayor será la tensión, hasta ahí todo lógico.

A partir de ahí, los materiales tienen una tensión máxima que aguantan antes de romperse –con una zona elástica que recupera la forma y otra plástica que no lo hace- que se compara con la tensión calculada mediante un simulador en el ordenador. Se puede hacer a mano, pero todo lo que no sean geometrías sencillas como una viga se transforma en un infierno.

El ordenador lo que hace es descomponer el modelo en una malla con triangulitos, y calcula la deformación y tensión en cada uno de sus vértices. Método de elementos finitos se llama. Luego genera una bonita imagen con colorines como las que aquí os traigo, además de unas tablas con los resultados.

 

 

 

RESULTADOS

Para que os pongáis en situación, el policarbonato aguanta hasta 54,4 MPa, mientras que la fibra de carbono 300 MPa. Ambos valores son del catálogo del programa, en la realidad podrían variar. Os dejo la tabla de tensiones alcanzadas y deformaciones producidas. Las deformaciones son bastante pequeñas, pues las tensiones se transmiten bien gracias a la forma redondeada de la cúpula:

 

 

Como podéis observar, todas aguantan. Los dos valores de tensión en la reforzada equivalen a la parte de policarbonato y de fibra de carbono respectivamente. La de 3 mm se queda en el límite en el ensayo frontal, pero recordemos que ante tal carga, lo de menos es que se raje o reviente, lo importante es que consiga desviar el peligro y proteger al piloto.

Pese a ello, vamos con unas imágenes de la de 5 mm, para que se entienda mejor. La deformación está exagerada para que se aprecie, y en la de tensión he bajado la escala a 15 MPa para que se vea la zona de los bordes, pues hay picos que estarían por el otro lado. No os asustéis si los valores no encajan exactamente, los de arriba son más fiables tras muchos ensayos.

 

 

 

 

 

A la izquierda, las deformaciones máximas se encuentran, como no podía ser de otra forma, en la zona del impacto. Sin embargo, a la derecha, las tensiones máximas se repartirían entre dicha zona y en los bordes, pues tienen que soportar toda la fuerza a distancia -momento- estando fijadas al coche.

Sería interesante el diseño de un sistema de anclaje al coche que permita su rápida extracción, pero a su vez que sea lo suficientemente resistente. El sistema que llevan ahora mismo en la parte extraíble de su habitáculo me da la impresión de que no aguantaría, pero es rápido, así que supongo que se podría reforzar para la ocasión.

 

CONCLUSIONES Y LÍNEA FUTURAS

Esta es una idea con mucho desarrollo por delante. Es posible que el mayor quebradero de cabeza sea el tiempo de extracción, pues la resistencia no parece serlo. En caso de ser demasiado “cerrado” para los pilotos, se podría hacer una pequeña abertura en la parte frontal que deje pasar el aire, aunque fuera en el chasis, parecido a la entrada que usaba el F-Duct.

Destacar que los materiales usados son ejemplos normalitos, siempre se puede ir un paso más allá. De hecho, investigando un poco encontré un plástico llamado PVDF -fluoruro de polivinilideno, cuidadín con el nombre-, con unas propiedades increíbles para esta aplicación: ligereza, una resistencia casi tres veces mayor que la del PC, es autoextinguible -corta el fuego-, no se ve afectado por los rayos UV y tiene un índice de refracción de 1,4.

Esto último es genial, pues los mejores cristales tienen un índice de refracción de 1,5, siendo el del aire 1, que sería no deformar en absoluto lo que vemos. El problema es que no cuenta con una transparencia a la altura, pero parece que está siendo solucionado mediante un proceso de fabricación más cuidadoso.

 

Además, como digo, esta cúpula está pensada para ser implementada en los coches actuales. En el caso de que cambiemos toda la normativa, podremos contar con mayor libertad para integrarla mejor o conseguir ciertas características.

No se puede cambiar la Fórmula 1 de la noche a la mañana. Esto se trata de un ejercicio de curiosidad realizado por unos estudiantes, poco preciso y con una gran falta de recursos. Pero da que pensar, por qué la Fórmula 1, la categoría reina, el escaparate tecnológico, no ha invertido en su omnipotencia algo más de tiempo en este frente.

 

6 comentarios
Para comentar o votarInicia sesión
12 Ago 2015 - 13:33
Grandisimo articulo, más allá de si estamos de acuerdo con las cupulas o no. La seguridad es importantisima, pero poner una cupula..... No sé, me cuesta verlo, para mi gusto la F1 perdería toda la esencia. Me gustaría una votación entre los pilotos para decidir si cerrar el cockpit o no, al final son ellos los que se juegan el pellejo. Un saludo.
12 Ago 2015 - 12:45
Y tambien se podria pober unos limpia parabrisas para cuando llueve, y aire acondicionado. Podria ponerse una portezuela para subirse al mismo....a no ya existen categorias de vehiculos cerrados, porque mejor desaparecemos la F1 y se traslada esta tecnologia a Lemans...cierto ya la tiene....Algunos quieren descubrir la polvora...
12 Ago 2015 - 09:33
Cosas como esta evitaría una muerte como la de Henry Surtees en Fórmula 2
Default user picture
11 Ago 2015 - 21:31
Aunque obviamente no deja de ser un ejercicio con fines educativos, me parece muy interesante. No sólo cuenta aportar datos concretos, sino también plantear análisis de este tipo y hacernos pensar un poco. Porque la f1 no es solo ruido y porque, al menos a algunos, nos interesa tratar temas técnicos, sigue poniendo muchos más!
La_Batamanta
11 Ago 2015 - 17:49
#2 Estéticamente en lo personal no me agradan las cúpulas, pero no dejo de reconocer que en seguridad ... Ver comentario
Añado que también es importante que los pilotos no pierdan visibilidad... sería mas peligroso todavía
Sakhir
11 Ago 2015 - 15:33
Estéticamente en lo personal no me agradan las cúpulas, pero no dejo de reconocer que en seguridad serian importantes. Ya vimos varias accidentes complicadas y un par fatales a ese nivel, Bianchi, De Villota, y otras como la de Massa en Hungría, Alonso en SPA, Raikkonen en Austria. ... Ahora el tema es si realmente evitarían muertes como la de Bianchi o de Villota, si resistirían es tipo de imparto, como también el de otro monoplaza que pase por arriba, o solo la de objetos extraños como el caso de Massa.
Últimos vídeos
Te puede interesar
Circuit Ricardo Tormo
Competición

El Circuit Ricardo Tormo reabre tras la DANA

Las fuertes lluvias e inundaciones repentinas que azotaron durante a la provincia de Valencia hace tres semanas golpearon también al mundo del motor. El Circuit Ricardo Tormo fue la infraestructura más perjudicada, con su entrada principal completamente destruida. Poco a poco Valencia se está reconstruyendo de la catástrofe y el Circuit ya tiene fecha para reabrir sus puertas.

0
20 Nov 2024 - 15:15